NON-BI-ORDERABILITY OF KNOT GROUPS FROM DEHN’S
PRESENTATION

ADAM CLAY AND COLIN DESMARAIS

ABSTRACT. We present a computational approach to determining non-bi-orderability of knot
groups based on Dehn’s presentation. Our computations indicate that it may be possible to
use the Alexander polynomial of a knot to prove non-bi-orderability of its knot group. This is
in contrast with the result of [9], where the authors showed that knowledge of the Alexander

polynomial alone is insufficient to conclude that the knot group is bi-orderable.
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1. INTRODUCTION

Given a group G, a strict total ordering < of its elements is called a left-ordering if g < h
implies fg < fh for all f,g,h € G. A left-ordering of a group which is also right-invariant, in
the sense that g < h implies gf < hf for all f,g,h € G, is called a bi-ordering of G.

Motivated by the conjectured connection between orderability properties of the fundamental
group and Heegaard-Floer homology, a natural class of groups to investigate from an orderability
perspective are the fundamental groups of 3-manifolds [2]. This note deals specifically with the
fundamental groups of knot complements—which are known to be left-orderable since they have
infinite abelianization [1]—and focuses on determining when these groups are not bi-orderable.

Specifically, the purpose of this note is to demonstrate a brute force approach for proving non-
bi-orderability of knot groups. Our method is similar to the approach of [3] and the appendix
of [8], where the authors use a computational approach to determining non-left-orderability of
the fundamental groups of certain 3-manifolds.

Our results provide computational evidence in favour of the following conjecture.

Conjecture 1.1. If K is a knot in S% and 71(S3 \ K) is bi-orderable, then the Alexander
polynomial Ak (t) has at least one positive real root.

This conjecture has already been proved in several cases. For example, if K is fibred or if K is a
two-bridge knot, then it is know that A () must have a positive real root whenever (5% \ K)
is bi-orderable [7, 6]. We add to the evidence with the following theorem.

Theorem 1.2. Suppose that K is a knot with fewer than 10 crossings, different from 949. If
Ak (t) has no positive real roots, then 71(S*\ K) is not bi-orderable.
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The paper is organized as follows. In Section 2 we review Dehn’s presentation for the purpose
of establishing conventions and presenting a solution to the word problem. In Section 3 we
present our algorithm for proving non-bi-orderability, and in Section 4 we state our results and

provide two worked examples. In the final section we give the proof of Theorem 1.2.

2. DEHN’S PRESENTATION AND THE WORD PROBLEM

Recall that Dehn’s presentation of a knot group is computed from an oriented diagram of a knot
K as follows. The arcs of the diagram divide the plane into regions, which we label a, b, ¢, ...,
these will serve as the generators of the group. From the i-th crossing one creates a relator
r; by reading around the crossing, and listing the generators encountered with alternating
exponents. Our convention is that for each crossing, one begins to the right of the under-
arc leaving the crossing and proceeds in a clockwise manner around the crossing, listing the
generators encountered with alternating signs as in Figure 1. We use capital letters in place of
inverses, for ease of notation. We arrive at the presentation:

(2.0.1) (a,bye,...|r1,r2,73,...).

From this presentation, one arrives at Dehn’s presentation by setting any one generator equal
to the identity.

FIGURE 1. A crossing yielding the relation dCbA.

Given Dehn’s presentation of a knot group, our algorithm also requires a solution to the word
problem. In the case of alternating knots, we sketch the method of [5] below.

Beginning with presentation (2.0.1), colour the unbounded region of the diagram black and
checkboard-colour the remaining regions. Cyclically permute the relations appearing in (2.0.1),
and take inverses if necessary, so that every relator begins with a generator corresponding to
a black region. If the generator corresponding to the unbounded region appears in a relator,
after permuting and taking inverses the relator must begin with that generator. Then set
the generator corresponding to the unbounded region equal to the identity to produce Dehn’s
presentation of (9% \ K).

Following [5], we then produce a complete, terminating list of rewriting rules from the relations
prepared as in the previous paragraph:

(1) For every relation of length three, say UzV, find the relation of length three ending
with U (such a relation always exists [5, Claim 3.3]). Say it is WyU. Then produce the
following list of rules:
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(a) v—=Uz

(b) 2V — Wy

(¢) VU = Z

(d) ZW - VY

(2) For every relation of length four, say zUyV', we have the following list of rules:

(a) zU = vY

(b) yV —uZ

(c) Zv— Uy

(d) Yu—Vz

(e) If there is a relation of length three ending with V', say it is XwV, then replace
Rule 2a with zU — XwY, and replace Rule 2¢ with ZX — UyW.

(f) If there is a relation of length three ending with U, say it is XwU, then replace

Rule 2b with yV — XwZ, and replace Rule 2d with YX — VzW.

Example 2.1. Consider the knot 815, labeled as in Figure 2.

FI1GURE 2. The knot 8;5 with regions labeled and crossings numbered.

From the method above we arrive at the following relators, one from each crossing;:

(1) AfE
(2) BfA

We then produce the following rewriting system using the method above:
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e > Af a— Bf b—Cyg ¢ — Dg

fE — Bf fA—Cg gB — Dy gC — Eh

FA— F AB — F BC —» G CD— G

FB — EF FC — AG GD — BG GE —- CH

d— Eh fB— AfI gD — Cgl hE — EhI

hD — Af iE — CgF iB — EhG iD— AfH

DE — H FA— BiF GC — DiG HE — EiH

HA — DF IC - EfG IE — BgH 1A — DhF

3. THE ALGORITHM

It is well known that a group G is left-orderable if and only if there exists a subset P C G,
called the positive cone, satisfying

(1) P-PCP
(2) PNnP 1=
(3) PUP~ 1 =G\ {1g}.

Suppose that G is finitely generated, and fix a generating set .S of G. Denote the word length of
an element g € G relative to S by £g(g). For each positive integer n, set Gy, = {g € G | £s(g) <
n}. If G is left-orderable with positive cone P, then for every n there exists a set ), C G with

(a) (Qn : Qn) N Gn - Qn
(b) Qan;1 =0
(C) QnUle :Gn\{lG}'

For example, having fixed a positive cone P we can take @), = P N G,. As a consequence, if
such a @Q,, does not exists for some n, then the group is not left-orderable. An algorithmic check
for the existence of such a set ), is the basis of the computational approach to left-orderability
taken in [3, 8].

This generalizes to the case of bi-orderability as follows. In addition to (1)-(3) above, the
positive cone of a bi-ordering also satisfies

(4) gPg ' Cc Pforall g € G.

Let n and m be positive integers. If GG is bi-orderable, then for all n and m, there exists a set
Qn,m C G so that

(Qn,m ' Qn,m) N Gn C Qn,m
Qun N Qo = 0
Qn,m U Q;;n = Gn \ {1G}
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Remark 3.1. If Qy, satisfying (a)-(d) above exists, then @, }, will also satisfy (a)-(d).

As in the case of left-orderability, if G is bi-orderable with positive cone P then Q. ., = PNG,
satisfies the properties above. Thus, if such a @, does not exists for some n and m, then G

is not bi-orderable.

Therefore the following algorithm is a test for non-bi-orderability of a group G. It takes as input
integers n and m and a subset Q C Gy, it then attempts to construct a set @, ,, containing @
and satisfying the conditions above, and returns false when @, ,, containing () does not exist.

function cCONSTRUCTQ(Q C Gy,)
while (Q- Q)N G, ¢ Q do
Q:=(QU(Q -Q)NGy

for g € G, do
Q= (Q U gngl) NGn

end for
end while
if 15 € @ then return false
end if
if QUQ ! =G, \ {lg} then return true
end if

g=aword in G, \ (QUQTU{1g})
return constructQ(Q U {g}) or constructQ(Q U {g~'})
end function

By Remark 3.1 and property (c), for any g € G, we may begin by assuming g € @ (this
amounts to assuming that we are constructing the positive cone of a bi-ordering in which g is
positive).

In practice this function is quite slow, but it can be improved in some special cases. Focusing
on the special case when G is an alternating knot group, we make two changes to improve the
speed of the search.

First, every element g of the knot group G has a corresponding normal form n(g) that results
from iteratively applying the complete, terminating rewriting system of Section 2 to any rep-
resentative word w of g (here G, implicitly is represented by Dehn’s presentation). Therefore
we first represent g € G by its normal form, and in place of £g(g) we calculate the length of
every g € G by taking the word length of the normal form n(g). Using normal forms and this
definition of length makes it much faster to determine whether or not an element is the identity,
or whether or not it is a member of G,,. Therefore, in what follows (G,, consists of g € G for
which the corresponding normal form n(g) is a word of length less than or equal to n.

Second, we know that G is finitely generated and G/G’ = Z, and thus G is bi-orderable if and
only if there exists a bi-ordering of G’ that is invariant under conjugation by the elements of
G [10]. That is, if G is bi-orderable, then G’ admits a cone P’ satisfying (1)-(3) above (with G
replaced by G') as well as
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(4') gP'g7' C P' for all g € G.

So for all n and m, there must exist a set @y, ,, satisfying (a)-(d) above (with G}, replaced by
Gl = G'NG,), and with (d) replaced by

(@) 9(Qum)g™ ' NG C Q. for all g € G

!

., so that we have

Thus as a second improvement, we can replace all instances of G,, with G
a smaller search space. Note that G can be calculated from G, by simply applying the
abelianization homomorphism to every element of G,,, and keeping those elements which map

to zero.

Example 3.2. When G is the knot group of 85, for example, we calculate G as follows. We
begin with the Dehn presentation with relations as in Example 2.1:

G = (a,b,c,de, f,g,h,i| AfE,BfA,CygB,DgC,EhD, fBiE, gDiB, hEiD)

whose abelianization homomorphism ¢ : G — Z is defined by

¢(a) =1 o(f) =2
¢(b) =1 ¢(g) =2
¢(c) =1 ¢(h) =2
¢(d) =1 ¢(i) =0
¢(e) = 1.

Then we construct the list of all words which can be expressed as a product of two or fewer
generators, and from the list we discard all words whose normal form is not length two. For
example, under the rewriting system from Example 2.1 the word Ab becomes ACYg, so it is
discarded; while Fg is in normal form and so we keep it. We then apply the above abelianization
homomorphism to the remaining words and discard those that do not map to zero. After these
operations we find Gy = {i,I, Fg, fG,gF,Gf,Fh, fH,Hf hF,gH,Gh,hG, Hg}.

4. RESULTS

We ran our program on all alternating knots with fewer than 10 crossings, and it successfully

showed that the knots 815, 935, 933 and 94; have non-bi-orderable knot groups. In all other

/

cases, the program either found a subset @, ,,, satisfying (a)-(c) and (d’) for the given n and

m, or it did not terminate.
Below are the examples of 815 and 935, the cases of 938 and 947 arein Appendix A.

Example 4.1. The knot group of 8;5 has Dehn presentation
G = (a,b,c,d,e, f,g,h,i | AfE,BfA,CgB,DgC,EhD, fBiE, gDiB, hEiD).

Our algorithm produces the following output for n = 3 and m = 2. First, we calculate that G5 =
{i,1,Fg, fG,gF,Gf,Fh, fH,Hf hF,gH,Gh,hG,Hg, AfA,AfC,AfD,...}, and we consider
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adding each of these elements in turn in an attempt to construct Qg’Q satisfying properties (a),
(b), (c) and (d’) from Section 3.

Below, each ”-” represents a new instance of the function CONSTRUCTQ(Q), while inden-
tation represents nested instances for which @) contains all of the preceding elements and is
closed under properties (a) and (d’). As described in the pseudocode, false is returned for each
instance where the identity is contained in the closure of @ under properties (a) and (d’). By
Remark 3.1, we may begin by assuming that I € Q). Moreover, once we have added an element
to @, taking the closure under conjugation by elements of length 3 means we do not need to
test conjugate elements at subsequent steps: So, for example, once we add Fg to (Q we need
not carry out the test of adding gF, since gF = g(Fg)g~'. Our program then produces the
following output:

- Fg added to @
- F'h added to )
bgfaFdHBIAFhDIbfFgFel EhgFEhDilIIdGDiFhIdIhgFhDilIIdGHil fFhFiDfFhlgld
FhDIiIGiABIbVFEADFdHBAFhDIbfFgFel EhgFhDillIdGDiFhldIhgFhDiIIIdGHI
fFhEIDfFhligldFhDIilGiAaFhAadgFhDilIldGDeGHBIAFhDIbfFgFel EhgFhDiIll
dGDiFhIdIhgFhDiIIIdGHiBdFhDI is the identity.
- try adding H f to @) instead
- Hg is equivalent to H fAaFgAa (thus Hg is already in Q).
- AfA added to Q
aAfABIbAFAfAfEle is the identity.
- try adding aF'a to @ instead
- AfC added to Q
AfCcEfFqgFelC is the identity.
- try adding cFa to @ instead
- AfD added to @
FfAfDFaFafFgbGDhAfDHdBgaFaGbaFgAgH fB is the identity.
- try adding dF'a to @ instead
HdFahH fBdFafaaFaAFbfHfF is the identity.
Neither AfD nor dF'a can be added to ). Thus we cannot form a positive cone.
- try adding G f to @ instead
- F'h added to )
FheGfFIfCcfFhF fGfFCbI fFRhFilIB is the identity.
- try adding H f to Q) instead
- Gh added to @
cbFahCGf fBgGhGbIF fH fFFBBgGhGbIbBIbgGhcGhFFBgGhGbI fFIffHgGhGA
BBgGhGbIbBIbf BhCGf fBgGhGbIF fH fFFBBgGhGbIbBIbgGhcGhFF BgGhGbI f
FIffHgGhGcHFBgGhGbIfFIfhDIdCCCGffBgGhGbIF fH fFFBBgGhGbIbBIbg
GhcGhFFBgGhGbI fFIf f is the identity.
- try adding Hg to @ instead
- AfA added to Q
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- aAfABIbAFAfAfFEIe is the identity.
- try adding aFa to @) instead
- AfC added to @
AfCcHgCIcC is the identity.
- try adding cF'a to @ instead
- AfD added to Q
dDAfDdHiBDAfDdbGcFaglhDHggDAfDdGgH gG is the identity.
- try adding dF'a to @ instead
HdFahH fBdFafaaFaAFbfH fF is the identity.
Neither AfD nor dF'a can be added to Q. Thus we cannot form a positive cone.

We conclude that (52 \ 815) is not bi-orderable, in particular there is no set Qgg satisfying
properties (a), (b), (¢) and (d’) of Section 3.

Example 4.2. In the case of the knot 935, there are ways to exploit the symmetry of the knot
which allows for a proof which is nearly human-readable. Calculating a presentation of the
knot group from the diagram below, we find:

71(5%\935) = (a,b,c,d, e, f,g,h,i,j | BdA, AfC,ChB,eAdB,eBjA, gCfA, gAjC,iBhC,iCjB)

FiGURrE 3. The knot 935 with regions labeled and crossings numbered.

With n = 4 and m = 1 our program gives the following output. First, we calculate that
" ={FE,I,G,...}. Begin with F € Q). Then:

-G added to Q
-1 added to
-IcBEbAFEaCaClIcHaGARBGbA is the identity. Thus we cannot form a positive cone.
try adding ¢ to @ instead
-Df added to @
-cDfCEhCaGAcGHNHbLD fCEchCaGAcGHhbDD fdBiaAGaCGcAHB
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is the identity. Thus we cannot form a positive cone.
try adding F'd to () instead
-FfaFdABEbFcGAEaCgEGfdFdDcGCiHilAbEBaFihlcBdFdDcGCiBEbAFEalbC

is the identity. Thus we cannot form a positive cone.

Leaving our program to run produces roughly thirty more lines of output. However, with our
program having ruled out the possibility of a positive cone @) containing either {E,G, I} or
{E,G, 1}, observe that there are three automorphisms ¢1, ¢2, ¢3 : G — G of order two arising
from the three axes of reflective symmetry in Figure 3. Restricted to the generators e, g,i of
71(S3 \ 935), they act as:

p1(e) = E,¢1(9) = 1, ¢1(i)
p2(e) = I, pa2(g) = G, ¢2(i)
p3(e) = G, ¢3(9) = E, ¢3(i)

1
E
1.

Therefore if we suppose there exists @ containing {FE,g,i}, then ¢o(Q) is a positive cone
which contains {¢2(FE), ¢2(g), #2(i)} = {E,G,i}, which is not possible. To rule out the fi-
nal case, if Q were to contain {E, g, I} then (¢1(Q))~! would be a positive cone which contains
{1 (E) "L ¢1(9)~ Y, 01 (I)71} = {E, G, i}, again an impossibility.

Therefore 71 (S \ 935) is not bi-orderable.

5. PROOF OF THEOREM 1.2

Last, we collect the necessary information to prove Theorem 1.2. First, if a knot K is either 2-
bridge or fibred, and A (t) has no positive real roots, then 71 (S \ K) is not bi-orderable [7, 6].
Of the knots with fewer than 10 crossings, the following knots have Alexander polynomials with
no positive real roots and are neither fibred nor 2-bridge, and so are not covered by either of
these theorems: 815, 916, 935, 938, 941, 949. The knot group of 914 admits a presentation with
two generators and one tidy relator [6], and thus it is not bi-orderable [4]. Of the remaining
knots, 815, 935, 938 and 941 have non-bi-orderable groups, with our program providing the proofs
found in Section 4 and Appendix 5. The remaining knot, 949, cannot be addressed with our
approach because our solution to the word problem only applies to alternating knots, and 949

is not alternating.

APPENDIX A. THE GROUPS OF 933 AND 947 ARE NOT BI-ORDERABLE

The knot group of 93g is:
m1(5%\ 938) = (a,b,¢,d, e, f,g,h,i,5 | BeA,CfB,DfC, AgD,hAeB, gAhJ, hlgJ, gl fD, fIhB)

/
n,m

We attempt to construct @ := with n = 3 and m = 2. The program produces the

following output, assuming E € Q):
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-F added to Q
-G added to )
-H added to @
-Ai added to @
-bDaBfAiFbHoGAAdFOVEBBAEIaAiAHieAil fFFFiDHaHaAiAhJ AijJHjAhiI D
AihHHdil Fil is the identity.
-try adding Ia to @ instead
-Bj added to Q
-dFgAbBjBflaFaGbBjBfDAHagGiGAABjhHHaDHgGIlaAbEBagGIlgJGjG is
the identity.
-try adding Jb to @Q instead
-cDGbJbBjAEaJgGdCbIbBjI flaADEBaF FiJabbJbBjl flaAbEBaF FiJBeJbEa
1aAAgBbbJbBjI flaAbEBaF FiJBeJbEalaAbAEaG is the identity
-try adding h to @ instead
-Ai added to Q
-aAiAaGAdFhfFDbBDAigGGdbIhfFFil FiD AidB is the identity.
-try adding Ia to @) instead
-elaEbhBchCcDGhggGGGACHIhfFFilFiB flaFaGelaEbhBchCcDGhggGGGACHI
hfFFilFiBgJelaEbhBchCcDGhggGGGACjJIajJGjaEAA is the identity
-try adding g to @ instead
-CECGjHggcBFdEDbaFEACcdgDECGghgDEdJjgJgcBgcBFAEDbaEACcdgDEChgDE
dHbAFEal fgFicgcBFdEDbaEACcdgDEChgDEdHCeAIGjHggeBFAEDbaEACcdgDEC
GghgDEdJjgJgiiGdgDEgcFCcECIiEIhgDEdHRfdgDEFHacBFbaEAjAIGjHggcBFd
EDbaEACcdgDECGghgDFEdJjgJgiiGdgDFEqgcFCcECIiEThgDEdHhfdgDEFHaJ fGdg
DEgcFCcECAgbEBaF is the identity.
-try adding f to @ instead
-G added to )
-H added to @
-eAiGACAFHVAEaBfHjfAFEaJhaFE fHFccCbFHVAEaBfHjfAEaJhBefHF fCDgG
fgAbEBalaHbAEaBEeDGACAFHbAFEaBfHjfAEaJhaFE fHFccCbFHbAEaBfHj f
AFEaJhBefHF fCDgGfgdEbFHbAFEaBfHjfAEaJhBfif fF fI is the identity
-try adding h to @) instead
-BhffFbCAhgGGaAhaEcbGhgGB fAhgGGaAhaEccfGFffF fCCFiAhgGGaAhaFEccf
GFffFfCCFhaEfeEAfIhil is the identity.
-try adding g to @ instead
-iBdgDFEbdf gF f DBhEHbBgbaEAbAEaBIhgDEdHRAF AgeE feEEagDEdfaEH jAgeE f
eEFEaJgEG is the identity.

Thus 71 (53 \ 938) is not bi-orderable.

The knot group of 941 is:

11(S3\ 941) = (a,b,c,d,e, f,g,h,i,j | ERA, AiB, BiC,CjD, DjE,iAhF, jFhE, jGiF,iGjC)
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We attempt to construct @ := Q;%m with n = 4 and m = 1, and begin by assuming I € Q.
Then the program produces the following output:

-J added to Q
-Af added to @
-bf DDaAfAJdJdhJhAfHalAjJH fGJgFaBAfbIAFiAfIBcDDaAfAJdJdhJhAfHal
AjJH fGJgFaBAfbIACcAEDDaAfAJdJdhJhAfHalAjJH fGJgFjAfJeJaBAfbC A
hhAfHal AEfJFJeHabAfBceC' is the identity.
-try adding F'a to @) instead
-AD added to Q
-AG added to Q
-Bg added to @
-eaEbBgBeJdABgaADDAiBglcJCEbBgBADJVBgBADjEjBgJeiBgl is the
identity.
-try adding Gb to @ instead
-BE added to Q)
-C'f added to @
-hicCfCcADCIICC filFaillcC fiHceC filFaillcCfCCCfFBEf is the
identity.
-try adding F'c instead
-Dg added to Q
-1aBdDgDbBEBbDgAhEDgebBEBH Dgl BADgDbBEBbDgbl Dgiil Il B
is the identity.
-try adding Gd instead
-Ef added to Q
-iGeEfEgIcFcCilAE faAJabblEfil FhiH fJaFaAjBbIBB is the
identity.
-try adding Fe instead
-1j added to @
-aBbIjBbljDGbcADCAAbC 9¢GdJBEjGeDDGbcADCdaFaAdBbhd
DFcdGjGbcADCJgDHBbUf Jel jDGbcADCAEaFaAjFiljIB is the
identity.
-try adding J7 instead
-JiFgF fJiFdeFeEjGdJDdCgGdJBEjGeDDGbcADCdaFaAdD f
GiFel fljJidBiJgF fJiFdeFeEjGdJDdCgGdJBEjGeDDGbcAD
CdaFaAdDfGiFeljJfJiFjlcADCbCF fJiFdeFeEjGdJDdCgGd
JBEjGeDDGbcADCdaFaAdD feCDFedleD is the identity.
-try adding eb instead
-bhHbebBEIehFaHebBjCebcBFabbebBJCebcBFab is the identity.
-try adding ga instead
-gabillIIBcJgajJADjJC is the identity.
-try adding da instead
-djFFdafFIfbillIBfHaFaAhJdabadaAJBDcdaCcadaACjjFFdafFIfbillIBfHa
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FaAhJdabadaAJBhJadaAeJEjFiFdafFIfIfHGdFFdafFIfbillIBfHaFaAhJda
bhdaH JBDdagJ is the identity.
-try adding j instead
-Af added to Q

-AD added to Q

-al fHBaADAaaADAal AAbjhBAfbFjBaADAal AbjeADdjDEJjADdjDJiJhAfHa

TAjiBADIIbADIAbjBbjGjGjBaADAal AbjeADdjDEJcADCglcADC jiccADCCJ

gljiJjB is the identity.
-try adding da instead
-HjHadaAhBAfbIJIjJIhaJdail AfilljAal AbjjHada AhBAfbIJIjJBAfbcICJI
bdaBAfbBBA{fbiB is the identity.

-try adding F'a instead

-AD added to )

-fhADIITHjFaADAajAijjJjliFal is the identity.

-try adding da instead
-AG added to @
-caAGAadaAel AGiFjfECjjFajjJJ is the identity.
-try adding ga instead
-eCHhgaHjFaJjillhjcl AgaaHdjFaJjil I DhiBFabE AgaaHdjFaJjilIDhEjjJje
DdaHjFaJjillhaHHjFaJjilIThEjehFaAd is the identity.

Thus (53 \ 941) is not bi-orderable.
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